Prolonged Exercise Shifts Ventilatory Parameters at the Moderate-to-Heavy Intensity Transition

Date
2023-07-27
Authors
Stevenson, Julian D
Kilding, Andrew E
Plews, Daniel J
Maunder, Ed
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract

PURPOSE: To quantify the effects of prolonged cycling on the rate of ventilation ([Formula: see text]), frequency of respiration (FR), and tidal volume (VT) associated with the moderate-to-heavy intensity transition.

METHODS: Fourteen endurance-trained cyclists and triathletes (one female) completed an assessment of the moderate-to-heavy intensity transition, determined as the first ventilatory threshold (VT1), before (PRE) and after (POST) two hours of moderate-intensity cycling. The power output, [Formula: see text], FR, and VT associated with VT1 were determined PRE and POST.

RESULTS: As previously reported, power output at VT1 significantly decreased by ~ 10% from PRE to POST. The [Formula: see text] associated with VT1 was unchanged from PRE to POST (72 ± 12 vs. 69 ± 13 L.min-1, ∆ - 3 ± 5 L.min-1, ∆ - 4 ± 8%, P = 0.075), and relatively consistent (within-subject coefficient of variation, 5.4% [3.7, 8.0%]). The [Formula: see text] associated with VT1 was produced with increased FR (27.6 ± 5.8 vs. 31.9 ± 6.5 breaths.min-1, ∆ 4.3 ± 3.1 breaths.min-1, ∆ 16 ± 11%, P = 0.0002) and decreased VT (2.62 ± 0.43 vs. 2.19 ± 0.36 L.breath-1, ∆ - 0.44 ± 0.22 L.breath-1, ∆ - 16 ± 7%, P = 0.0002) in POST.

CONCLUSION: These data suggest prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition, but [Formula: see text] remains stable. Real-time monitoring of [Formula: see text] may be a useful means of assessing proximity to the moderate-to-heavy intensity transition during prolonged exercise and is worthy of further research.

Description
Keywords
Cycling , Durability , Duration , Exercise , Fatigue resistance , Thresholds , Cycling , Durability , Duration , Exercise , Fatigue resistance , Thresholds , 42 Health Sciences , 4207 Sports Science and Exercise , Cancer , 1106 Human Movement and Sports Sciences , Sport Sciences , 3202 Clinical sciences , 3208 Medical physiology , 4207 Sports science and exercise
Source
European Journal of Applied Physiology, ISSN: 1439-6319 (Print); 1439-6319 (Online), Springer, 124(1), 309-315. doi: 10.1007/s00421-023-05285-2
Rights statement
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.