Optimal Stomatal Theory Predicts Co₂ Responses of Stomatal Conductance in Both Gymnosperm and Angiosperm Trees

aut.relation.endpage1241
aut.relation.issue4
aut.relation.journalNew Phytologist
aut.relation.startpage1229
aut.relation.volume237
dc.contributor.authorGardner, Anna
dc.contributor.authorJiang, Mingkai
dc.contributor.authorEllsworth, David
dc.contributor.authorMacKenzie, A Rob
dc.contributor.authorPritchard, Jeremy
dc.contributor.authorBader, Martin Karl-Friedrich
dc.contributor.authorBarton, Craig
dc.contributor.authorBernacchi, Carl
dc.contributor.authorCalfapietra, Carlo
dc.contributor.authorCrous, Kristine Y
dc.contributor.authorDusenge, Mirindi Eric
dc.contributor.authorGimeno, Teresa E
dc.contributor.authorHall, Marianne
dc.contributor.authorLamba, Shubhangi
dc.contributor.authorLeuzinger, Sebastian
dc.contributor.authorUddling, Johan
dc.contributor.authorWarren, Jeffrey
dc.contributor.authorWallin, Göran
dc.contributor.authorMedlyn, Belinda
dc.date.accessioned2023-07-05T23:18:02Z
dc.date.available2023-07-05T23:18:02Z
dc.date.issued2022-11-13
dc.description.abstractOptimal stomatal theory predicts that stomata operate to maximize photosynthesis (Anet ) and minimize transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2 ), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta-analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs ). We compared three plant functional types (PFTs), using the Unified Stomatal Optimisation (USO) model to account for confounding effects of leaf-air vapour pressure difference (D). We expected smaller gs , but greater Anet , responses to eCO2 in gymnosperms compared to angiosperm PFTs. We found that iWUE increased in proportion to increasing eCO2 in all PFTs, and that increases in Anet had stronger effects than reductions in gs . The USO model correctly captured stomatal behaviour with eCO2 across most datasets. The chief difference among PFTs was a lower stomatal slope parameter (g1 ) for the gymnosperm, compared to angiosperm, species. Land surface models can use the USO model to describe stomatal behaviour under changing atmospheric CO2 conditions.
dc.identifier.citationNew Phytologist, ISSN: 0028-646X (Print); 1469-8137 (Online), Wiley, 237(4), 1229-1241. doi: 10.1111/nph.18618
dc.identifier.doi10.1111/nph.18618
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttp://hdl.handle.net/10292/16368
dc.languageeng
dc.publisherWiley
dc.relation.urihttps://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18618
dc.rights.accessrightsOpenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectclimate change
dc.subjectdeciduous
dc.subjectevergreen
dc.subjectFree-air CO2 enrichment
dc.subjectphotosynthesis
dc.subjectwater use efficiency
dc.subjectclimate change
dc.subjectdeciduous
dc.subjectevergreen
dc.subjectfree-air CO2 enrichment
dc.subjectphotosynthesis
dc.subjectwater-use efficiency
dc.subject3108 Plant Biology
dc.subject31 Biological Sciences
dc.subject06 Biological Sciences
dc.subject07 Agricultural and Veterinary Sciences
dc.subjectPlant Biology & Botany
dc.subject3108 Plant biology
dc.subject4101 Climate change impacts and adaptation
dc.subject4102 Ecological applications
dc.subject.meshTrees
dc.subject.meshMagnoliopsida
dc.subject.meshCarbon Dioxide
dc.subject.meshCycadopsida
dc.subject.meshPlant Leaves
dc.subject.meshPhotosynthesis
dc.subject.meshWater
dc.subject.meshPlant Stomata
dc.subject.meshPlant Leaves
dc.subject.meshTrees
dc.subject.meshCarbon Dioxide
dc.subject.meshWater
dc.subject.meshPhotosynthesis
dc.subject.meshPlant Stomata
dc.subject.meshMagnoliopsida
dc.subject.meshCycadopsida
dc.subject.meshTrees
dc.subject.meshMagnoliopsida
dc.subject.meshCarbon Dioxide
dc.subject.meshCycadopsida
dc.subject.meshPlant Leaves
dc.subject.meshPhotosynthesis
dc.subject.meshWater
dc.subject.meshPlant Stomata
dc.titleOptimal Stomatal Theory Predicts Co₂ Responses of Stomatal Conductance in Both Gymnosperm and Angiosperm Trees
dc.typeJournal Article
pubs.elements-id483517
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New Phytologist - 2022 - Gardner - Optimal stomatal theory predicts CO2 responses of stomatal conductance in both.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Journal article