School of Sport and Recreation - Te Kura Hākinakina
Permanent link for this collection
Research in the School of Sport and Recreation covers sport and activity-related areas, as well as performance, nutrition, coaching and human potential. AUT is the home of New Zealand's top sport and fitness facility, AUT Millennium, and the Sports Performance Research Institute New Zealand (SPRINZ) is New Zealand’s number one sports research institute.
Browse
Browsing School of Sport and Recreation - Te Kura Hākinakina by Subject "1106 Human Movement and Sports Sciences"
Now showing 1 - 20 of 30
Results Per Page
Sort Options
- ItemA Global Perspective on Collision and Non-collision Match Characteristics in Male Rugby Union: Comparisons by Age and Playing Standard(Informa UK Limited, 2023-02-19) Till, K; Hendricks, S; Scantlebury, S; Dalton-Barron, N; Gill, N; den Hollander, S; Kemp, S; Kilding, AE; Lambert, M; Mackreth, P; O’Reilly, J; Owen, C; Spencer, K; Stokes, K; Tee, J; Tucker, R; Vaz, L; Weaving, D; Jones, BThis study quantified and compared the collision and non-collision match characteristics across age categories (i.e. U12, U14, U16, U18, Senior) for both amateur and elite playing standards from Tier 1 rugby union nations (i.e. England, South Africa, New Zealand). Two-hundred and one male matches (5911 min ball-in-play) were coded using computerised notational analysis, including 193,708 match characteristics (e.g. 83,688 collisions, 33,052 tackles, 13,299 rucks, 1006 mauls, 2681 scrums, 2923 lineouts, 44,879 passes, 5568 kicks). Generalised linear mixed models with post-hoc comparisons and cluster analysis compared the match characteristics by age category and playing standard. Overall significant differences (p < 0.001) between age category and playing standard were found for the frequency of match characteristics, and tackle and ruck activity. The frequency of characteristics increased with age category and playing standard except for scrums and tries that were the lowest at the senior level. For the tackle, the percentage of successful tackles, frequency of active shoulder, sequential and simultaneous tackles increased with age and playing standard. For ruck activity, the number of attackers and defenders were lower in U18 and senior than younger age categories. Cluster analysis demonstrated clear differences in all and collision match characteristics and activity by age category and playing standard. These findings provide the most comprehensive quantification and comparison of collision and non-collision activity in rugby union demonstrating increased frequency and type of collision activity with increasing age and playing standard. These findings have implications for policy to ensure the safe development of rugby union players throughout the world.
- ItemA Preliminary Investigation into the Frequency Dose Effects of High-Intensity Functional Training on Cardiometabolic Health(Journal of Sports Science and Medicine, 2023-12-01) Smith, LE; Van Guilder, GP; Dalleck, LC; Lewis, NR; Dages, AG; Harris, NKThe objective of this study was to explore the effects of three weekly frequency doses of high-intensity functional training (HIFT) on an array of cardiometabolic markers in adults with metabolic syndrome (MetS). Twenty-one men and women, randomized into one (HIFT1), two (HIFT2), or three (HIFT3) days per week of HIFT, completed 3-weeks of familiarization plus a 12-week progressive training program. Pre-and post-intervention, several cardiometabolic, body composition, oxygen con-sumption, metabolic syndrome severity, and perceptions of fitness measurements were assessed. Additionally, an exercise enjoyment survey was administered post-intervention. A Cohen’s d was used to demonstrate within-group change effect size. Alt-hough this study was not fully powered, a one-way and two-way ANOVA were used to compare the dose groups to provide provisional insights. No differences were found when frequency dose groups were compared. Many cardiometabolic, body composition, and fitness improvements were seen within each group, with clinically meaningful improvements in the metabolic syndrome severity score (MSSS) (HIFT1:-0.105, d = 0.28; HIFT2:-0.382, d = 1.20; HIFT3:-0.467, d = 1.07), waist circumference (HIFT1:-4.1cm, d = 3.33; HIFT2:-5.4cm, d = 0.89; HIFT3:-0.7cm, d = 0.20), and blood glucose (HIFT1:-9.5mg/dL, d = 0.98; HIFT2:-4.9mg/dL, d = 1.00; HIFT3:-1.7mg/dL, d = 0.23). All three groups similarly reported high exercise enjoyment and likeliness to continue after the intervention. In conclusion, HIFT performed once, twice, or thrice a week elicits improvements in MetS and is considered enjoyable. HIFT, even at a low weekly dose, therefore represents a potential strategy to reduce the global MetS burden.
- ItemAn Examination of the Associations Between Nutritional Peaking Strategies in Physique Sport and Competitor Characteristics(BMC, 2024-07-15) Homer, Kai A; Cross, Matt R; Helms, Eric RBACKGROUND: Physique athletes are subjectively judged on their on-stage esthetic per their competition division criteria. To succeed, competitors look to acutely enhance their appearance by manipulating nutritional variables in the days leading up to competition, commonly referred to as peak week (PW). Despite their documented wide adoption, PW strategies lack experimental evidence. Further, the relationship between the specific strategies and the characteristics of the competitors who implement them are unknown. The aim of this research was to examine the effect of competitor characteristics on the specific nutritional peaking strategies implemented, the length of these strategies, and the range of daily carbohydrate (CHO) intakes during these strategies. METHODS: A 58-item survey was developed to gather information on peak week nutrition and training practices of physique athletes. A total of 160 respondents above the age of 18 who had competed in the last 5 years completed the nutrition section. The topics analyzed for this paper included competitor demographics, peaking strategies utilized, and PW CHO intakes. Competitor demographics are presented with the use of descriptive statistics. Associations between competitor demographics and peaking strategies implemented, peaking strategy length, and daily CHO intake ranges were assessed using multiple logistic regression, multiple ordinal logistic regression, and linear mixed models, respectively. RESULTS: From the sampled population, ages 24-39 years (71.2%), male (68.8%), natural (65%), and amateur (90%) were the most common characteristics from their respective categories, while mean competition preparation length was 20.35 ± 8.03 weeks (Males: 19.77 ± 7.56 weeks, Females: 21.62 ± 8.93 weeks), competition preparation body mass loss was 11.5 ± 5.56 kg (M: 12.7 ± 5.76 kg, F: 7.16 ± 3.99 kg), and competition body mass was 72.09 ± 15.74 kg (M: 80.15 ± 11.33 kg, F: 54.34 ± 7.16 kg). For males, the highest and lowest daily CHO intake during PW were 489.63 ± 224.03 g (6.22 ± 2.93 g/kg body mass) and 148.64 ± 152.01 g (1.94 ± 2.17 g/kg), respectively, while for females these values were 266.73 ± 131.23 g (5.06 ± 2.67 g/kg) and 94.42 ± 80.72 g (1.81 ± 1.57 g/kg), respectively. CHO back loading (45%) and water loading (40.6%) were the most popular peaking strategies, while the most prevalent peaking strategy length was 7 days (27.2%). None of the competitor characteristics predicted the use of CHO-based peaking strategies nor peaking strategy length. For non-CHO-based strategies, drug-enhanced competitors were more likely to restrict water than non-drug enhanced, while males and professional competitors had greater odds of loading sodium than females and amateurs, respectively. Finally, when comparing the disparity in highest and lowest CHO intakes during peak week, sex was the only significant factor. CONCLUSIONS: The results of this survey provide further information on the nutritional peaking strategies implemented by competitors. Certain characteristics were identified as predictors of sodium loading and water restriction, and the range of daily PW CHO intake. Contrastingly, no associations were found for CHO-based peaking strategies or peaking strategy length. While our analyses may be underpowered, and thus results should be interpreted with caution, it appears the nutritional peaking strategies implemented by physique competitors are seemingly complex and highly individual.
- ItemAuthors’ Reply to Julian Alcazar et al.: “Exploring the Low Force-High Velocity Domain of the Force–Velocity Relationship in Acyclic Lower-Limb Extensions”(Springer Science and Business Media LLC, 2023-11-28) Rivière, Jean Romain; Morin, Jean‑Benoît; Bowen, Maximilien; Cross, Matt R; Messonnier, Laurent A; Samozino, Pierre
- ItemBody Fat of Competitive Volleyball Players: A Systematic Review with Meta-Analysis(BMC, 2023) Matłosz, Piotr; Makivic, Bojan; Csapo, Robert; Hume, Patria; Mitter, Benedikt; Martínez-Rodríguez, Alejandro; Bauer, PascalBACKGROUND: Reference values of body fat for competitive volleyball players are lacking, making it difficult to interpret measurement results. This review systematically summarized published data on the relative body fat of volleyball players and calculated potential differences between sex, measurement method, and competitive level. METHODS: The protocol followed the Preferred Reported Items for Systematic Reviews and Meta-Analysis guidelines. The literature search was conducted using five electronic databases to retrieve all relevant publications from January 1, 2010, to July 1, 2021. The 63 studies including 2607 players that met the inclusion criteria were analyzed using random-effects models. Data were reported as pooled mean body fat with 95% confidence intervals. RESULTS: Body fat for males and females was 12.8% (11.9-13.8%) and 22.8% (21.9-23.7%), respectively. Body fat was 18.3% (16.3-20.4%) measured via skinfolds, 18.4% (15.6-21.2%) via bioelectrical impedance analysis, 24.2% (20.4-28.0%) via dual-energy x-ray absorptiometry and 21.6% (17.4-25.8%) via densitometry. Regional, national, and international-level players had body fat values of 19.5% (17.8-21.2%), 20.3% (18.6-22.0%), and 17.9% (15.7-20.4%), respectively. When the meta-regression was adjusted for the variables sex, measurement method, and competitive level, a significant difference between sex (p < 0.001), dual-energy x-ray absorptiometry and skinfolds (p = 0.02), and national and international-level players (p = 0.02) was found. However, sensitivity analysis revealed that findings regarding measurement method and competitive level were not robust and should, therefore, be interpreted with caution. CONCLUSIONS: Despite the limitations of published data, this meta-analysis provided pooled values for body fat of male and female volleyball players for different competitive levels and measurement methods.
- ItemCan an Inertial Measurement Unit, Combined with Machine Learning, Accurately Measure Ground Reaction Forces in Cricket Fast Bowling?(Taylor and Francis Group, 2023-11-09) McGrath, Joseph W; Neville, Jonathon; Stewart, Tom; Lamb, Matt; Alway, Peter; King, Mark; Cronin, JohnThis study examined whether an inertial measurement unit (IMU) could measure ground reaction force (GRF) during a cricket fast bowling delivery. Eighteen male fast bowlers had IMUs attached to their upper back and bowling wrist. Each participant bowled 36 deliveries, split into three different intensity zones: low = 70% of maximum perceived bowling effort, medium = 85%, and high = 100%. A force plate was embedded into the bowling crease to measure the ground truth GRF. Three machine learning models were used to estimate GRF from the IMU data. The best results from all models showed a mean absolute percentage error of 22.1% body weights (BW) for vertical and horizontal peak force, 24.1% for vertical impulse, 32.6% and 33.6% for vertical and horizontal loading rates, respectively. The linear support vector machine model had the most consistent results. Although results were similar to other papers that have estimated GRF, the error would likely prevent its use in individual monitoring. However, due to the large differences in raw GRFs between participants, researchers may be able to help identify links among GRF, injury, and performance by categorising values into levels (i.e., low and high).
- ItemCarbohydrate, but Not Fat, Oxidation is Reduced During Moderate-Intensity Exercise Performed in 33 vs. 18 °C at Matched Heart Rates(Springer, 2023-05-18) Charoensap, Thanchanok; Kilding, Andrew E; Maunder, EdPURPOSE: Exposure to environmental heat stress increases carbohydrate oxidation and extracellular heat shock protein 70 (HSP70) concentrations during endurance exercise at matched absolute, external work rates. However, a reduction in absolute work rate typically occurs when unacclimated endurance athletes train and/or compete in hot environments. We sought to determine the effect of environmental heat stress on carbohydrate oxidation rates and plasma HSP70 expression during exercise at matched heart rates (HR). METHODS: Ten endurance-trained, male cyclists performed two experimental trials in an acute, randomised, counterbalanced cross-over design. Each trial involved a 90-min bout of cycling exercise at 95% of the HR associated with the first ventilatory threshold in either 18 (TEMP) or 33 °C (HEAT), with ~ 60% relative humidity. RESULTS: Mean power output (17 ± 11%, P < 0.001) and whole-body energy expenditure (14 ± 8%, P < 0.001) were significantly lower in HEAT. Whole-body carbohydrate oxidation rates were significantly lower in HEAT (19 ± 11%, P = 0.002), while fat oxidation rates were not different between-trials. The heat stress-induced reduction in carbohydrate oxidation was associated with the observed reduction in power output (r = 0.64, 95% CI, 0.01, 0.91, P = 0.05) and augmented sweat rates (r = 0.85, 95% CI, 0.49, 0.96, P = 0.002). Plasma HSP70 and adrenaline concentrations were not increased with exercise in either environment. CONCLUSION: These data contribute to our understanding of how moderate environmental heat stress is likely to influence substrate oxidation and plasma HSP70 expression in an ecologically-valid model of endurance exercise.
- ItemCriteria and Guidelines for Returning to Running Following a Tibial Bone Stress Injury: A Scoping Review(Springer, 2024-08-14) George, Esther; Sheerin, Kelly; Reid, DuncanTibial bone stress injuries (BSIs) are common among long-distance runners. They have a high recurrence rate, and complexity emerges in the wider management and successful return to running. Following a tibial BSI, a critical component of complete rehabilitation is the successful return to running, and there is a lack of consistency or strong evidence to guide this process. The objectives of this review were to outline the criteria used in clinical decision-making prior to resuming running, and to establish evidence-based guidelines for the return to running process following a tibial BSI. Electronic databases including MEDLINE, CINAHL, Scopus, SPORTDiscus and AMED were searched for studies that stated criteria or provided guidelines on the objectives above. Fifty studies met the inclusion criteria and were included. Thirty-nine were reviews or clinical commentaries, three were retrospective cohort studies, two were randomised controlled trials, two were pilot studies, one was a prospective observational study, and three were case studies. Therefore, the recommendations that have been surmised are based on level IV evidence. Decisions on when an athlete should return to running should be shared between clinicians, coaches and the athlete. There are five important components to address prior to introducing running, which are: the resolution of bony tenderness, pain-free walking, evidence of radiological healing in high-risk BSIs, strength, functional and loading tests, and the identification of contributing factors. Effective return to running planning should address the athlete’s risk profile and manage the risk by balancing the athlete’s interests and reinjury prevention. An individualised graduated return to running programme should be initiated, often starting with walk-run intervals, progressing running distance ahead of speed and intensity, with symptom provocation a key consideration. Contributing factors to the initial injury should be addressed throughout the return to run process.
- ItemDoes Lateral Banking and Radius Affect Well-Trained Sprinters and Team-Sports Players During Bend Sprinting?(Taylor and Francis Group, 2023-06-17) White, Jonathan; Wilson, Cassie; von Lieres Und Wilkau, Hans; Wyatt, Hannah; Weir, Gillian; Hamill, Joseph; Irwin, Gareth; Exell, Timothy AThis study investigated the short-term responses of step characteristics in sprinters and team-sports players under different bend conditions. Eight participants from each group completed 80 m sprints in four conditions: banked and flat, in lanes two and four (L2B, L4B, L2F, L4F). Groups showed similar changes in step velocity (SV) across conditions and limbs. However, sprinters produced significantly shorter ground contact times (GCT) than team sports players in L2B and L4B for both left (0.123 s vs 0.145 s and 0.123 s vs 0.140 s) and right steps (0.115 s vs 0.136 s and 0.120 s vs 0.141 s) (p > 0.001-0.029; ES = 1.15-1.37). Across both groups, SV was generally lower in flat conditions compared to banked (Left: 7.21 m/s vs 6.82 m/s and Right: 7.31 m/s vs 7.09 m/s in lane two), occurring due to reduced step length (SL) rather than step frequency (SF), suggesting that banking improves SV via increased SL. Sprinters produced significantly shorter GCT in banked conditions that led to non-significant increases in SF and SV, highlighting the importance of bend sprinting specific conditioning and training environments representative of indoor competition for sprint athletes.
- ItemDouble Sigmoid Model for Fitting Fatigue Profiles in Mouse Fast- and Slow-Twitch Muscle(WILEY-BLACKWELL, 2008) Cairns, SP; Robinson, D; Loiselle, DSWe present a curve-fitting approach that permits quantitative comparisons of fatigue profiles obtained with different stimulation protocols in isolated slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles of mice. Profiles from our usual stimulation protocol (125 Hz for 500 ms, evoked once every second for 100-300 s) could be fitted by single-term functions (sigmoids or exponentials) but not by a double exponential. A clearly superior fit, as confirmed by the Akaiki Information Criterion, was achieved using a double-sigmoid function. Fitting accuracy was exceptional; mean square errors were typically <1% and r2 > 0.9995. The first sigmoid (early fatigue) involved ∼10% decline of isometric force to an intermediate plateau in both muscle types; the second sigmoid (late fatigue) involved a reduction of force to a final plateau, the decline being 83% of initial force in EDL and 63% of initial force in soleus. The maximal slope of each sigmoid was seven- to eightfold greater in EDL than in soleus. The general applicability of the model was tested by fitting profiles with a severe force loss arising from repeated tetanic stimulation evoked at different frequencies or rest periods, or with excitation via nerve terminals in soleus. Late fatigue, which was absent at 30 Hz, occurred earlier and to a greater extent at 125 than 50 Hz. The model captured small changes in rate of late fatigue for nerve terminal versus sarcolemmal stimulation. We conclude that a double-sigmoid expression is a useful and accurate model to characterize fatigue in isolated muscle preparations. © 2008 The Authors.
- ItemDurability of the Moderate-to-Heavy-Intensity Transition Is Related to the Effects of Prolonged Exercise on Severe-Intensity Performance(Springer Science and Business Media LLC, 2024-03-28) Hamilton, Kate; Kilding, Andrew E; Plews, Daniel J; Mildenhall, Mathew J; Waldron, Mark; Charoensap, Thanchanok; Cox, Tobias H; Brick, Matthew J; Leigh, Warren B; Maunder, EdPurpose Power output at the moderate-to-heavy-intensity transition decreases during prolonged exercise, and resilience to this has been termed ‘durability’. The purpose of this study was to assess the relationship between durability and the effect of prolonged exercise on severe-intensity performance, and explore intramuscular correlates of durability. Methods On separate days, 13 well-trained cyclists and triathletes (V̇O2peak, 57.3 ± 4.8 mL kg−1 min−1; training volume, 12 ± 2.1 h week−1) undertook an incremental test and 5-min time trial (TT) to determine power output at the first ventilatory threshold (VT1) and severe-intensity performance, with and without 150-min of prior moderate-intensity cycling. A single resting vastus lateralis microbiopsy was obtained. Results Prolonged exercise reduced power output at VT1 (211 ± 40 vs. 198 ± 39 W, ∆ -13 ± 16 W, ∆ -6 ± 7%, P = 0.013) and 5-min TT performance (333 ± 75 vs. 302 ± 63 W, ∆ -31 ± 41 W, ∆ -9 ± 10%, P = 0.017). The reduction in 5-min TT performance was significantly associated with durability of VT1 (rs = 0.719, P = 0.007). Durability of VT1 was not related to vastus lateralis carnosine content, citrate synthase activity, or complex I activity (P > 0.05). Conclusion These data provide the first direct support that durability of the moderate-to-heavy-intensity transition is an important performance parameter, as more durable athletes exhibited smaller reductions in 5-min TT performance following prolonged exercise. We did not find relationships between durability and vastus lateralis carnosine content, citrate synthase activity, or complex I activity.
- ItemEffect of Small and Large Energy Surpluses on Strength, Muscle, and Skinfold Thickness in Resistance-Trained Individuals: A Parallel Groups Design(Springer Science and Business Media LLC, 2023-11-02) Helms, Eric R; Spence, Alyssa-Joy; Sousa, Colby; Kreiger, James; Taylor, Steve; Oranchuk, Dustin J; Dieter, Brad P; Watkins, Casey MBackground Many perform resistance training (RT) to increase muscle mass and strength. Energy surpluses are advised to support such gains; however, if too large, could cause unnecessary fat gain. We randomized 21 trained lifters performing RT 3 d/wk for eight weeks into maintenance energy (MAIN), moderate (5% [MOD]), and high (15% [HIGH]) energy surplus groups to determine if skinfold thicknesses (ST), squat and bench one-repetition maximum (1-RM), or biceps brachii, triceps brachii, or quadriceps muscle thicknesses (MT) differed by group. COVID-19 reduced our sample, leaving 17 completers. Thus, in addition to Bayesian ANCOVA comparisons, we analyzed changes in body mass (BM) with ST, 1-RM, and MT changes via regression. We reported Bayes factors (BF10) indicating odds ratios of the relative likelihood of hypotheses (e.g., BF10 = 2 indicates the hypothesis is twice as likely as another) and coefficients of determination (R2) for regressions. Results ANCOVAs provided no evidence supporting the group model for MT or squat 1-RM. However, moderate (BF10 = 9.9) and strong evidence (BF10 = 14.5) indicated HIGH increased bench 1-RM more than MOD and MAIN, respectively. Further, there was moderate evidence (BF10 = 4.2) HIGH increased ST more than MAIN and weak evidence (BF10 = 2.4) MOD increased ST more than MAIN. Regression provided strong evidence that BM change predicts ST change (BF10 = 14.3, R2 = 0.49) and weak evidence predicting biceps brachii MT change (BF10 = 1.4, R2 = 0.24). Conclusions While some group-based differences were found, our larger N regression provides the most generalizable evidence. Therefore, we conclude faster rates of BM gain (and by proxy larger surpluses) primarily increase rates of fat gain rather than augmenting 1-RM or MT. However, biceps brachii, the muscle which received the greatest stimulus in this study, may have been positively impacted by greater BM gain, albeit slightly. Our findings are limited to the confines of this study, where a group of lifters with mixed training experience performed moderate volumes 3 d/wk for 8 weeks. Thus, future work is needed to evaluate the relationship between BM gains, increases in ST and RT adaptations in other contexts.
- ItemExploring the Low Force-High Velocity Domain of the Force–Velocity Relationship in Acyclic Lower-Limb Extensions(Springer, 2023-07-13) Rivière, Jean Romain; Morin, Jean-Benoit; Bowen, Maximilien; Cross, Matthew; Messonnier, Laurent; Samozino, PierrePurpose To compare linear and curvilinear models describing the force–velocity relationship obtained in lower-limb acyclic extensions, considering experimental data on an unprecedented range of velocity conditions. Methods Nine athletes performed lower-limb extensions on a leg-press ergometer, designed to provide a very broad range of force and velocity conditions. Previously inaccessible low inertial and resistive conditions were achieved by performing extensions horizontally and with assistance. Force and velocity were continuously measured over the push-off in six resistive conditions to assess individual force–velocity relationships. Goodness of fit of linear and curvilinear models (second-order polynomial function, Fenn and Marsh’s, and Hill’s equations) on force and velocity data were compared via the Akaike Information Criterion. Results Expressed relative to the theoretical maximal force and velocity obtained from the linear model, force and velocity data ranged from 26.6 ± 6.6 to 96.0 ± 3.6% (16–99%) and from 8.3 ± 1.9 to 76.6 ± 7.0% (5–86%), respectively. Curvilinear and linear models showed very high fit (adjusted r2 = 0.951–0.999; SEE = 17-159N). Despite curvilinear models better fitting the data, there was a ~ 99–100% chance the linear model best described the data. Conclusion A combination between goodness of fit, degrees of freedom and common sense (e.g., rational physiologically values) indicated linear modelling is preferable for describing the force–velocity relationship during acyclic lower-limb extensions, compared to curvilinear models. Notably, linearity appears maintained in conditions approaching theoretical maximal velocity. Using horizontal and assisted lower-limb extension to more broadly explore resistive/assistive conditions could improve reliability and accuracy of the force–velocity relationship and associated parameters.
- ItemInfluence of Resistance Training Proximity-to-Failure on Skeletal Muscle Hypertrophy: A Systematic Review With Meta-Analysis(Springer Science and Business Media LLC, 2022-11-05) Refalo, MC; Helms, ER; Trexler, ET; Hamilton, DL; Fyfe, JJBackground and Objective: This systematic review with meta-analysis investigated the influence of resistance training proximity-to-failure on muscle hypertrophy. Methods: Literature searches in the PubMed, SCOPUS and SPORTDiscus databases identified a total of 15 studies that measured muscle hypertrophy (in healthy adults of any age and resistance training experience) and compared resistance training performed to: (A) momentary muscular failure versus non-failure; (B) set failure (defined as anything other than momentary muscular failure) versus non-failure; or (C) different velocity loss thresholds. Results: There was a trivial advantage for resistance training performed to set failure versus non-failure for muscle hypertrophy in studies applying any definition of set failure [effect size=0.19 (95% confidence interval 0.00, 0.37), p=0.045], with no moderating effect of volume load (p=0.884) or relative load (p=0.525). Given the variability in set failure definitions applied across studies, sub-group analyses were conducted and found no advantage for either resistance training performed to momentary muscular failure versus non-failure for muscle hypertrophy [effect size=0.12 (95% confidence interval −0.13, 0.37), p=0.343], or for resistance training performed to high (>25%) versus moderate (20–25%) velocity loss thresholds [effect size=0.08 (95% confidence interval −0.16, 0.32), p=0.529]. Conclusion: Overall, our main findings suggest that (i) there is no evidence to support that resistance training performed to momentary muscular failure is superior to non-failure resistance training for muscle hypertrophy and (ii) higher velocity loss thresholds, and theoretically closer proximities-to-failure do not always elicit greater muscle hypertrophy. As such, these results provide evidence for a potential non-linear relationship between proximity-to-failure and muscle hypertrophy.
- ItemInternal and External Workload in National and International Netball Competition(Informa UK Limited, 2023-11-20) Eijwoudt, S; Andrews, T; McErlain-Naylor, SA; Stewart, T; Spencer, KDifferences in workload exist between netball playing positions and competition levels, but no research has compared workloads experienced by the same elite players during national and international competitions. This study collected internal (heart rate) and external (PlayerLoad·min−1) workload data per match quarter from 44 players during a national competition and 12 players during an international competition. Nine players played in both competitions. Linear mixed models compared percentage of match quarter in each heart rate zone and PlayerLoad·min−1 between competitions for each playing position. Workloads against low- and high-ranked international opponents were also compared. Internal workloads were greater in national compared to international competition for GD and WD positions. PlayerLoad·min−1 was significantly higher by 8–13% in the national competition for positions WD and C, and by 5–8% in the international competition for GD and GA. Positional differences may indicate a role of the team’s tactical style of play. Workloads were generally greater against higher- rather than lower-ranked international opponents. These results indicate that tactical factors in combination with playing position and opposition characteristics should be considered when preparing physically for matches.
- ItemIs the Concept, Method, or Measurement to Blame for Testing Error? An Illustration Using the Force-Velocity-Power Profile(Human Kinetics, 2022-11-10) Samozino, Pierre; Rivière, Jean Romain; Jimenez-Reyes, Pedro; Cross, Matt R; Morin, Jean-BenoîtWhen poor reliability of "output" variables is reported, it can be difficult to discern whether blame lies with the measurement (ie, the inputs) or the overarching concept. This commentary addresses this issue, using the force-velocity-power (FvP) profile in jumping to illustrate the interplay between concept, method, and measurement reliability. While FvP testing has risen in popularity and accessibility, some studies have challenged the reliability and subsequent utility of the concept itself without clearly considering the potential for imprecise procedures to impact reliability measures. To this end, simulations based on virtual athletes confirmed that push-off distance and jump-height variability should be <4% to 5% to guarantee well-fitted force-velocity relationships and acceptable typical error (<10%) in FvP outputs, which was in line with previous experimental findings. Thus, while arguably acceptable in isolation, the 5% to 10% variability in push-off distance or jump height reported in the critiquing studies suggests that their methods were not reliable enough (lack of familiarization, inaccurate procedures, or submaximal efforts) to infer underpinning force-production capacities. Instead of challenging only the concept of FvP relationship testing, an alternative conclusion should have considered the context in which the results were observed: If procedures' and/or tasks' execution is too variable, FvP outputs will be unreliable. As for some other neuromuscular or physiological testing, the FvP relationship, which magnifies measurement errors, is unreliable when the input measurements or testing procedures are inaccurate independently from the method or concept used. Field "simple" methods require the same methodological rigor as "lab" methods to obtain reliable output data.
- ItemNatural Killer Cell Subset Count and Antigen-Stimulated Activation in Response to Exhaustive Running Following Adaptation to a Ketogenic Diet(Wiley, 2023-02-26) Shaw, David M; Keaney, Lauren; Maunder, Ed; Dulson, Deborah KNew Findings: What is the central question of this study? Does a ketogenic diet (KD) modulate circulating counts of natural killer (NK) cells, including CD56bright and CD56dim subsets, and their ability to activate (CD69 expression) following in vitro antigen stimulation in response to exhaustive moderate-intensity exercise? What is the main finding and its importance? The KD amplified the biphasic exercise-induced NK cell response due to a greater mobilisation of the cytotoxic CD56dim subset but did not alter NK cell CD69 expression. The KD appears to modulate exercise-induced circulating NK cell mobilisation and egress, but not antigen-stimulated circulating NK cell activation. Abstract: We investigated the effect of a 31-day ketogenic diet (KD) compared with a habitual, carbohydrate (CHO)-based diet on total circulating natural killer (NK) CD3−CD56+, dim and bright subset count, and antigen-stimulated CD3−CD56+ cell activation (CD69+) in response to exhaustive running. In a randomised, repeated-measures, cross-over study, eight trained, male endurance athletes ingested a 31-day low-CHO KD or their habitual diet (HD). On day 31, participants ran to exhaustion at 70% (Formula presented.) (∼3.5–4 h, ∼45–50 km). A low-CHO (<10 g) meal was ingested prior to the KD trial, with fat ingested during exercise. A high-CHO (2 g kg−1) meal was ingested prior to the HD trial, with CHO (∼55 g h−1) ingested during exercise. Venous blood samples were collected at pre-exercise, post-exercise and 1 h post-exercise. The KD amplified the classical exercise-induced biphasic CD3−CD56+ cell response by increasing the post-exercise counts (P = 0.0004), which appeared to be underpinned by the cytotoxic CD3−CD56dim subset (main effect of time point, P < 0.0001). The KD had no effect on NK cells’ expression of CD69 or their geometric mean fluorescence intensity of CD69 expression, either for unstimulated or for antigen-stimulated NK cells (all P > 0.05). In conclusion, adaptation to a KD may alter the number of circulating NK cells but not their ability to activate to an antigenic challenge.
- ItemPrevalence and Risk Factors for Musculoskeletal Pain When Running During Pregnancy: A Survey of 3102 Women.(Springer Science and Business Media LLC, 2024-02-06) Wyatt, Hannah E; Sheerin, Kelly; Hume, Patria A; Hébert-Losier, KimBACKGROUND: Musculoskeletal pain while running is a concern to women during pregnancy and can lead to running cessation. To support women who wish to run during pregnancy, it is essential to understand the sites, severities and personal risk factors associated with musculoskeletal pain. OBJECTIVE: The aim was to investigate prevalence and risk factors for musculoskeletal pain when running during pregnancy. METHODS: An online survey was completed by women who had a child in the past 5 years and ran prior to and during pregnancy. Pain frequency informed prevalence rates by body site, and logistic regression odds ratios (ORs) and 95% confidence intervals were calculated. RESULTS: A total of 3102 women of 23 ethnicities from 25 countries completed the survey. Women were 22-52 years old when they gave birth and ran 2-129 km/week during the 0.5-35 years before the birth of their youngest child. Women ran significantly less distance and less often during pregnancy than before pregnancy. Most women (86%) experienced pain while running during pregnancy (59% pelvis/sacroiliac joint, 52% lower back, 51% abdomen, 44% breast, 40% hip). The highest prevalence of severe-to-worst pain was at the pelvis/sacroiliac joint (9%). Women at greatest risk of pain while running during pregnancy had a previous injury (OR = 3.44) or were older (OR = 1.04). Women with a previous child were less likely to experience breast pain (OR = 0.76) than those running during their first pregnancy. CONCLUSION: Healthcare practices to reduce pain should focus on regions of greatest musculoskeletal change during pregnancy, specifically the pelvis, lower back and abdomen. Efforts to support women to run for longer throughout pregnancy should focus on pain at the pelvis and breasts.
- ItemProlonged Exercise Shifts Ventilatory Parameters at the Moderate-to-Heavy Intensity Transition(Springer, 2023-07-27) Stevenson, Julian D; Kilding, Andrew E; Plews, Daniel J; Maunder, EdPURPOSE: To quantify the effects of prolonged cycling on the rate of ventilation ([Formula: see text]), frequency of respiration (FR), and tidal volume (VT) associated with the moderate-to-heavy intensity transition. METHODS: Fourteen endurance-trained cyclists and triathletes (one female) completed an assessment of the moderate-to-heavy intensity transition, determined as the first ventilatory threshold (VT1), before (PRE) and after (POST) two hours of moderate-intensity cycling. The power output, [Formula: see text], FR, and VT associated with VT1 were determined PRE and POST. RESULTS: As previously reported, power output at VT1 significantly decreased by ~ 10% from PRE to POST. The [Formula: see text] associated with VT1 was unchanged from PRE to POST (72 ± 12 vs. 69 ± 13 L.min-1, ∆ - 3 ± 5 L.min-1, ∆ - 4 ± 8%, P = 0.075), and relatively consistent (within-subject coefficient of variation, 5.4% [3.7, 8.0%]). The [Formula: see text] associated with VT1 was produced with increased FR (27.6 ± 5.8 vs. 31.9 ± 6.5 breaths.min-1, ∆ 4.3 ± 3.1 breaths.min-1, ∆ 16 ± 11%, P = 0.0002) and decreased VT (2.62 ± 0.43 vs. 2.19 ± 0.36 L.breath-1, ∆ - 0.44 ± 0.22 L.breath-1, ∆ - 16 ± 7%, P = 0.0002) in POST. CONCLUSION: These data suggest prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition, but [Formula: see text] remains stable. Real-time monitoring of [Formula: see text] may be a useful means of assessing proximity to the moderate-to-heavy intensity transition during prolonged exercise and is worthy of further research.
- ItemQuest for Clarity: Investigating Concussion-Related Responsibilities Across the New Zealand Rugby Community System(BMJ Publishing Group, 2023-10-16) Salmon, Danielle M; Chua, Jason; Brown, James C; Clacy, Amanda; Kerr, Zachary Yukio; Walters, Simon; Keung, Sierra; Sullivan, S John; Register-Mihalik, Johna; Whatman, Chris; Sole, Gisela; Badenhorst, MareliseThere is a growing concern around concussions in rugby union, at all levels of the game. These concerns highlight the need to better manage and care for players. However, consistency around concussion-related responsibilities of stakeholders across the community rugby system remains challenging. Taking a systems thinking approach, this pragmatic, qualitative descriptive study explored key stakeholder groups within New Zealand’s community rugby system’s perceptions of their own and others’ concussion-related responsibilities. Participants included players from schools and clubs, coaches, parents, team leads and representatives from four provincial unions. A total of 155 participants (67 females and 88 males) were included in the study. Focus groups and individual interviews were conducted. Thematic content analysis was used to analyse data. Thirty concussion-related responsibilities were identified. These responsibilities were contained within four themes: (1) policies and support (responsibilities which influence policy, infrastructure, human or financial resources); (2) rugby culture and general management (responsibilities impacting players’ welfare and safety, attitudes and behaviour, including education, injury reporting and communication); (3) individual capabilities (responsibilities demonstrating knowledge and confidence managing concussion, leadership or role/task shifting) and (4) intervention following a suspected concussion (immediate responsibilities as a consequence of a suspected concussion). The need for role clarity was a prominent finding across themes. Additionally, injury management initiatives should prioritise communication between stakeholders and consider task-shifting opportunities for stakeholders with multiple responsibilities. How concussions will realistically be managed in a real-world sports setting and by whom needs to be clearly defined and accepted by each stakeholder group. A ‘framework of responsibilities’ may act as a starting point for discussion within different individual community rugby contexts on how these responsibilities translate to their context and how these responsibilities can be approached and assigned among available stakeholders.